平成 28 年度 第 4 回 VBL セミナー

4th VBL Seminar, 2016

日時:平成29年1月24日(火)16時30分~18時00分

場所:工学部3号館2階応用物理会議室(274号室)

- 講師: Dr. Risa Suryana (VBL 客員准教授、Sebelas Maret 大学、Indonesia)
- 題目: Growth of SiC on Si Substrates and Modification of TiO₂ Layers on FTO Substrates

Abstract:

This presentation reports our research that consists of two parts. First, interaction of Si(111) surface with saturated hydrocarbon gases to obtain SiC. Second, modification of TiO_2 layers on FTO substrate and its application in dye-sensitized solar cell (DSSC).

Deposition of each CH₄ and C₂H₆ gases on Si(111)-7×7 surface and co-deposition of Si and CH₄ gas on Si(111)-7×7 surface at different temperatures are investigated by reflection high-energy electron diffraction (RHEED), quadrupole mass spectroscopy (QMS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The RHEED patterns during CH₄ or C₂H₆ exposure indicate the evolution of structures such as δ -7×7, 1×1, $\sqrt{3}\times\sqrt{3}$ and SiC at temperatures from RT up to 800°C. Meanwhile, these patterns do not appear in co-deposition of Si and CH₄ gas. The amount of CH₃ molecules plays a role in structure evolution of Si(111) surfaces. Correlating SEM and AFM images, step modification of Si(111) surfaces will be discussed.

Modification of TiO_2 layer on fluorine-doped tin oxide (FTO) substrate has been performed in formation of nanorods and nanofibers. TiO₂ nanorods are synthesized through sol-gel method via anodic alumina membrane (AMM) as template. Meanwhile, TiO₂ nanofibers are synthesized using electrospinning method. AFM images confirmed that TiO₂ nanorods and TiO₂ nanofibers have diameter in range 18-30 nm and 100-1000 nm, respectively. TiO₂ nanorods and nanofibers layer are applied in DSSC. TiO₂ nanorods and nanofibers could increase the DSSC performance compared to use of TiO₂ nanoparticles only. It is considered that TiO₂ nanorods and nanofibers can be effective in photon trapping thus many photons interact to dyes to produce many excitedelectrons.

問合せ先: 名古屋大学工学研究科 量子工学専攻 齋藤弥八 Tel: 052-789-4459 E-mail: ysaito@nagoya-u.jp